A comprehensive guide "100 Writing Mistakes to Avoid" by Maeve Maddox

"100 Writing Mistakes to Avoid" by Maeve Maddox is a comprehensive guide aimed at helping writers enhance their craft by steering clear of common pitfalls. Maddox, a seasoned writer and language enthusiast, outlines various errors that writers often make and provides practical advice on how to rectify them. From grammatical blunders to stylistic faux pas, this book offers valuable insights to improve clarity, coherence, and overall effectiveness in writing. Whether you're a novice writer seeking to refine your skills or a seasoned wordsmith looking to polish your prose, "100 Writing Mistakes to Avoid" is an invaluable resource for honing your craft and elevating your writing to the next level.





Air Fuel Ratio of Diesel Engine



     ____    _                        __           ___      ______  ____
    / __ \  (_) ___    _____  ___    / /          /   |    / ____/ / __ \
   / / / / / / / _ \  / ___/ / _ \  / /          / /| |   / /_    / /_/ /
  / /_/ / / / /  __/ (__  ) /  __/ / /          / ___ |  / __/   / _, _/
 /_____/ /_/  \___/ /____/  \___/ /_/          /_/  |_| /_/     /_/ |_|
                    __ __       ___  __ __        ______  ______
                 __/ // /_     <  / / // /       / ____/ / ____/
                /_  _  __/     / / / // /_      /___ \  /___ \
               /_  _  __/     / / /__  __/ _   ____/ / ____/ /
                /_//_/       /_/    /_/   (_) /_____/ /_____/
.

Let's take a look at your figures.

With a diesel fuel oil consisting of 86.5% C, 13.2% H, 0.3% S and 0%O

86.5/12=7.21 where 12 is the molecular weight of carbon.

So ignoring the 0.3% sulphur, we can pretend your hydrocarbon is C7.21H13.2. (I'm not saying the molecules are that short, I'm just thinking about the carbon hydrogen ratio.)

CxHy + a(O2+0.79/0.21N2) => xCO2 + y/2H2O + a*0.79/0.21N2
where a=x+y/4

in this case, a= 7.21 + 13.2/4 = 10.51

AFR = a(MWO2+0.79/0.21*MWN2)/MWfuel
AFR = 10.51 (32 + 28*0.79/0.21) / (86.5+13.2)
    = 10.51 * 137.33 / 99.7
    = 14.42

14.55 Kg air to Kg fuel
So a rough calculation for your fuel (ignoring the sulpher in the fuel, argon in the air, etc) gives 14.42 which is pretty close to the figure you gave - not that I ever doubted you, ..., more a question of trying to understand why things are the way they are.

So why the difference to the earlier estimate?

If hydrogens were about 2:1 with the carbons, we could expect an AFR a bit below 15 as indicated earlier.

7.21*2= 14.42.
The actual percentage hydrogen you give is 13.2, ie less that 2 hydrogens per carbon.


Popular Posts